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FORCED VIBRATIONS OF A PIEZOCERAMIC CYLINDRICAL SHELL WITH 
LONGITUDINAL POLARIZATION* 

N.N. RCGACHEVA 

Forced vibrations of a circular cylindrical piezoceramic shell with 
longitudinal polarization caused by an electric load applied to electrodes 
on the shell edge are considered. A numerical computation is performed 
by the partition method for the electroelastic state, and values of the 
coefficient of electromechanical coupling obtained by different formulas 
are compared. 

1. We select the system of orthogonal curvilinear dimensionless coordinates 5, cp such 
that the E-line coincides with the generatrix and the q-line with the directrix of the 
cylinder. 

We write down the system of equations for the electroelastic shell under consideration 
in the selected coordinates and we omit here certain equations not used below. 

The equilibrium equations 

dT,,ldE - n&,, + Au,, = 0 

Tzn f e2dNl,ldE - ePnN2,, -j- ho,, = 0 

dS,,,ld~ + nT,, - N,,, + Au, = 0 

N,, = dWdt 

(1.1) 

(1.2) 

0.3) 

The electroelasticity relationships 

T,, = sin + vpsln - El,, T,, = (I (5" + vlsnJ - c&l, 

S - Sz,n = (%I - I*” - d,,%,c,-%,)M% 

Gin = --E~x~,, 

D,, = eggT hdJIEln + T,, + dl, (dJITl, 

Dm = .%lT @,d,,)-‘Em f d,bd,,-‘Sm 

(1.4) 

(1.5) 

(1.6) 

(1.7) 

(1.8) 

The electrostatics equations 

dD,,lde - nDs, = 0 

E,, = --dlp,ld& E,, = -nip, 

(1.9) 

(1.10) 

The strain-displacement formulas 

E ,,, = du,ld& e,, = -nv, - qw, 

o, = dv,ldE f nu, 
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(1.11) 

(1.12) 
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x In = d’w,ldp= (1.13) 

The number g in the second formula in (1.11) will be zero or unity depending on the kind 
of shell vibrations that are taking place. 

It is taken into account here and henceforth that the desired quantities vary with time 
t according to the law e-'e'(o is the angular frequency) , consequently, all the equations are 
written in the amplitude values of the desired quantities. Moreover, all the desired quan- 
tities. Moreover, all the desired quantities are expanded in Fourier series in the coordinate 
'F 

a 
P,= X P,,sinncp, P,= 5 P.,,cosq (1.24) 

11 E-1 ,,=I 

Any of the quantities $, T,, T,, u, w, Ed, s,, xl, E,,D1,Gl is understood to be Pr and any 
of the quantities S,,,v,w,E,,D,,N,; P,, to be P, while P, are functions ot the variable E. 

The u, V, w in (l.l)-(1.13) are displacements of points of the middle surface along the 
coordinates lines E, 'p and in the normal direction, respectively, T,, TP S,,, S,, are forces, 

G, G, are bending moments, N,, N8 are transverse forces, $ is the electric potential, D,, 
D,. are the electric induction vector components, and E,,E, are the electric field vector 
components. The standard notation /2/ is used for the physical constants, where the exceptions 
are certain quantities introduced in /l/ and given by the following formulas: 

n 11 = sasE/6, nz2 = s,,h/6, n,2 = n,, = --s,,t‘Mi 

CI = (d31a38E--d,ti,3E)/h c2 = (d,3Q?--d,,s18E)l~ 

6 = sl,!s,,E - (a,sE)a, vi = n,,lnii, a = n,,ln,,, c,~ = c,/cp 

For convenience, the desired dimensionless quantities are introduced into (l.l)-(1.12) 
and are related to the desired dimensional quantities with the asterisk subscript in the 
following manner: 

(1.15) 

where p is the density of the piezoceramic, h is half the shell thickness, and R is its 
radius. 

We will consider the shell edges covered by electrodes on which an electric potential is 
given that varies sinusoidally with time and generates forced shell vibrations. 

Cme of the most important characteristics of the behaviour of piezoceramic elements is 
the electromechanical coupling coefficient (FMCC). It characterizes the ratio of the electri- 
cal (mechanical) energy stored in the body volume that is capable of inversion to all the 
mechanical (electrical) energy delivered from outside to the piezoceramic body /3/. Several 
methods exist for calculating the EMCC. One, proposed by Mason /2/ is to determine the EMCC 
k from the formula 

For the problem 
electrical energy lrd 

The integration here is over the shell middle surface S. The Mason formulas for the 

k2 = U,,,“/(UeUd) (1.16) 

under consideration the mutual energy u,,,, the elastic energy u,, and the 
are determined from the following formulas: 

um= 
,s 
(d,,T,&* + W',,&, -- d,J,,,JL)ds (1.17) 

U, = 1 (s,,~T:* + ~s,,~T,,T,, + s3zET:* -i- s,rES:p*) ds 
Y 

Ua=S(E IITE;* + Q,~E:*) ds 
s 

energies are given in three-dimensional form. Formulas (1.17) are obtained as a result of 
integrating the three-dimensional integrands over the thickness coordinate by discarding small 
components in the theory of shells. Moreover, the moments are discarded since they are small 
in the problem under consideration. 

The dynamic EMCC is introduced by the formula 

kd2 = (w~~-o,~)/co,,* (1.18) 

where Q, is the resonance frequency and o, is the antiresonance frequency. 
A. F. Ulitko proposed another energetic EMCC formula /3/ 

k,s = (U(P) _uW)/U(P) (1.19) 
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where u(P) is the internal energy found for an electroelastic body with disconnected elec- 
trodes, and U(t) _Ps the internal energy of the same body with short-circuited electrodes. 
The formula for U@) can be obtained by replacing the superscript (p) by (k) in the last 
relationship in (1.19). Exactly as in (1.17), the passage to the terminology of shell theory 
is performed in the formulas for U(P) and UC'). 

The values of k,,Z is calculated as follows /3/. Firstly the strains are determined 
from the,,solution of the original problem. Then two auxiliary problems should be solved 
which are the integration of a second order differential equation in the electric potential 
rp to calculate U(P) and UC"). This equation can be obtained by substituting the relation- 
ships (1.7), (1.8), (1.10) into (1.9). It should here by considered that the strains are 
known from the solution of the original problem. The arbitraries of the integration for rptp) 
are determined from the integral condition on the surface of each disconne&ted electrode 

CS, is the electrode surface), and for (PCk) from the following electrical conditions on the 
short-circuited electrodes: 

J-““’ 1% .=&-I = 0 

where 21R is the shell length. 
After I#'~) and IpCk' have been found, it is not difficult to calculate U(P) and CJck) . 

2. Let the shell edges be covered by continuous electrodes on which values of the 
electric potential are given 

II, I+.fl = & 1 (2.1) 

The problem under consideration is axisymmetric. It is described by the Eqs.(l.l), 
(1.3), (1.4), (1.6), (1.7), (1.9), (l.lO), (1.11) and (1.13) in which we must put n =O, and 
moreover, we discard the subscript n on the desired quantities for brevity. After reduction, 
we write the system of equations in the form of three equations in the unknowns u, w,$): 

L,,=- p-g-(Lqu)], L,,=c,,;~, L,,=a,~~ 
L,,=-aa,p-d-, 

dE 
&,=_a L. a di= 

al=uvl+-$, as= ( a, = - & -t cl2 + 2 

In (2.2) we have used the notation 

ur = u, us = w, US = $ (2.3) 

We will now introduce a new unkown function 0. which we define from the equation 

DO = 0, D = I L,I 1 (i, j = 1, 2, 3) 

The desired quantities u, are expressed in terms cff @ as follows: 

where D,t is the cofactor of the element &. 
We will investigate the electroelastic state of the shell as a function of the frequency 

paraemter h. An asymptotic analysis of the equations of forced vibrations, performed using 
the scheme of /l/, clarified the classification of the dynamic problems in which its own 
approximate system of equations corresponds to each kind of vibrations. Without going into 
the computations, which are similar to those made in /l/, we will describe the simplified 
problem, 

To do this we divide the whole range of variation of the frequency parameter k into the 
following four sections: 1) 0< h< A,, 2) ) h - ho I Q e, 3)h,< h< A,, 4)h.>h,. The values of 

h, and h, will be determined below. 
The complete problem is separated into a membrane principal problem (PP) and a simple 
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edge effect in the first section. To obtain the PP equation, it is necessary to set q-1 

E = 0 in (1.1) and (1.11). Equating E to zero denotes discarding the moment terms. The 
complete problem is not separated into simpler ones in the second section since for [I- h,, I,< 
e the solution of the additional problem (AP) ceases to be rapidly varying in the direction 
of the qeneratrix. The number h, is determined from the condition that the coefficient of 

w g," equals zero in the resolving equation of the AP, presented in /l/ 

In this case the bending theory of shells should be used by setting q equal to one and 
E different from zero. 

In the third section of the change in the frequency parameter h the complete problem 
is separated into the membrane PP and the AP, where the solution of the AP will be oscillating 
without damping since ga" is negative in the resolving equation of the AP for values A,> 
h>h,. To obtain the equation of the membrane PP it is necessary to set r! = 0, q = 1 in (1.1) 
and (1.11). 

For values of h>h, where h,>21 (the fourth section), the shell performs quasitangen- 
tial vibrations for which the greatest value of w is h times less than the greatest values 
of u. Consequently, the complete problem can be separated into a PP describing quasitangential 
vibrations and an AP whose solution is oscillation with index of variability (1 + aV2, where 
s is the index of variability of the solution of the PP, whose equations are obtained from 
(1.1) and (1.11) for E =O, q = 0. Here equating q to zero denotes neglecting W compared 
with u. 

Fig.1 Fig.2 

Fig.3 

We will perform a computation using approximate equations as above. Such a separation 
of the electroelastic state for each kind of vibration simplifiesthecalculation considerably. 

In those cases when the complete problem can be separated into a PP and an AP, we will 
confine ourselves to the solution of the PP since the greatest desired quantities of the 
electroelastic state (the stress, displacement and electric potential) described by the AP 
equations near the edge are R/h times less than the corresponding greatest values of the PP 
in the problem under consideration. 

The calculation was performed for a shell made of the material PZT-4 /2/. 
The amplitude values of the desired quantities of the first resonance are shown in Fig.1 

for a shell of length 2R as a function of the longitudinal coordinate (the shell edges are 
free from mechanical supports). 

The dependence of the different electromechanical coupling coefficients on the frequency 
parameter i. is shown in Fig.2: the curve of k in (1.16) is denoted by dashes, that of k, in 
(1.19) by a solid line, and values of kd in (1.18) are denoted by circles, Since k,j character- 
ises the values of the EMCC within the interval Ih,,&,l the circle in Fig.2 is set in the 
middle of the interval (we consider kd to be the arithmetic mean of the EMCC for hr and &a). 
As is seen from Fiq.2, all values of kd lie on the curve of k,. Computation of the EMCC by 
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(1.16) yields qualitatively different rSSUltS and since kd is the characteristic confirmed 
experimentally and utilized extensively in practice, the agreement obtained confirms the 
validity of the energetic formula introduced by A.F. Ulitko. 

The dependence of the current I=I,oS,d,,n,, on the frequency parameter h is shown in 
Fig.3. The EMCC k,j was determined according to the calculated values of the current (the 
resonance and antiresonance frequencies correspond to infinite and zeroth values of the 
current, respectively). 

The results of the computation show that the EMCC takes the greatest values for quasi- 
tangential vibrations, where it decreases as the shell length increases. Values of the EMCC 
corresponding to the second section of the change in the frequency parameter I are close to 
zero. 

3. Let the shell edges be covered by slit electrodes on each of which the value of the 
electric potential is given. We will expand the electrical load in a Fourier series in the 
coordinate 

(3.1) 

where t, are constants. 
We take the membrane system of Eqs.(l.l), (1.21, (1.4), (1.5) and (1.7)-(1.12) as the 

initial system of equations by setting E = 0. This means that vibrations for whose descrip- 
tion the moment equations of the theory of piezoceramic shells should be used are eliminated 
from the consideration. There is a basis for this elimination: as is shown in the example 
of the axisymmetric problem , almost-zero values of the EMCC correspond to values of the 
frequency parameter h for which the complete problem does not separate into PP and AP. 

The action of the electrical load on the shell endfaces is similar to the action of a 
longitudinal load applied to the shell edge. Quasitransverse vibrations with low variability 
correspond to values of the frequency parameter h. comparable with one, and quasitangential 
vibrations correspond to the values h>l. 

Quasitransverse vibrations with low variability are described by the membrane system of 
equations in which q should be considered to be equal to one. In the quasitangential 
vibrations equations q should be set equal to zero, which corresponds to discarding small 
deflections w as compared with the displacements u and v. The system of equations solved 

for u,, v,,$, is written in the form of (2.21, while (2.3) must be replaced by the formulas 

u1 = un, up = v,, Ug =$,, (3.2) 

The following formulas hold for the elements L,,: 

L,, = b, + -f b,, L,, = b, $ , L,, = b, -$- + b, 

La1 = el$ , L,, = e2 $f + ear L,, = e, -$ 

La, = 4 $ + d,, La1 = da -& , L,, = e, 4 

b,=l---&avlva, b,=h-4, 
846 %o 

b,=n *-va-- 
( 

1 
E 644 Y1 > 

b,=l-3, +-+L, a=l_L!LL 
s11 c2 go--1 ._ 

e,=n E+ uvlu , 1. 1 1 1 

844 %I 
ea=T , e,=3.-r&m 

scr %a 

The desired quantities U, are expressed in terms of the auxiliary function d, by (2.4) 
and (2.5). 

On the shell edges conditions (3.1) should be satisfied: 
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for the n-th term of the expansion of the electric potential $. 
To be specific we will examine the case when there are two electrodes on each endface on 

which the following values of the electric potential are given: 

We will consider the shell edges to be unclamped 

T, = 0, s,, = 0 (E = r+ 1) 

For shells with the boundary conditions (3.4) and (3.5) the first natural frequencies and 
the EMCC are calculated by means of (1.161, (1.18) and (1.19) as a function of the shell length. 

The results of the computations are presented in the table. Its first column contains 
values of the ratio between the shell length and its radius , the second column is the res- 
onance frequency, the third is the antiresonance frequency, and values of the EMCC calculated 
by different formulas are shown (increasedbya factor of 103) in the following columns. The 
superscripts (r) and (a) denote the EMCC values k(r) and k(a) found for the resonance 
or antiresonance frequencies, respectively. As in the case of the axisymmetric problem, the 
values of kd are in good agreement with the arithmetic mean of k, in the interval I&, ha1 
(the agreement is even better with the mean-integral value of k,). 

0.5 

0.75 

1 

1.25 

- 

- 

I - kd.lO’ 

2.07 2.24 
7.00 7.04 
9.8fi 10.80 
i2.34 12.44 

282 

3:: 
86 

1.91 2.10 300 
4.63 4.76 166 
5.17 5.27 135 
7.87 8.88 33ti 

1.64 
3.13 
4.43 
5 ,‘I3 

1.82 
3.19 
4.53 
5.93 

312 410 232 

1% 176: ifi 
317 377 263 

1.37 1.52 325 
2.68 2.70 a6 
4.07 4.20 171 
4.26 4.53 250 

kt’h 

370 
ii8 
401 
106 

iif+ 
163 
402 

398 

3:: 
265 

- 

I - - 
k(“4W * kcT).,W 

- 

I - k(a). ,138 

206 

2:: 
69 

2: 
268 
422 

275 
282 
359 
424 

218 110 305 
108 278 319 
106 420 431 
270 154 399 

265 388 
264 271 
411 475 
128 382 

258 
74 

2: 

283 426 
229 230 
111 428 
502 453 

Thus, a calculation has been performed for a cylindrical shell polarized in the longitudi- 
nal direction and with electrodes on the edges. It has been shown that either membrane 
equations should be used in the computation, or quasitangential vibrations equations for fairly 
high values of the frequency. The results of the computation enable us to deduce that the 
EMCC reaches the highest values for shells with free edges that perform vibrations for which 
the shell achieves the greatest displacements in the polarization direction. Moreover, the 
results of the computation confirm the efficiency ofthemethod proposed by A.F. Ulitko for 
calculating the EMCC for any shell vibrations frequencies. 
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